دسته بندی | مدیریت |
فرمت فایل | ppt |
حجم فایل | 2216 کیلو بایت |
تعداد صفحات فایل | 28 |
دسته بندی | حسابداری |
فرمت فایل | pptx |
حجم فایل | 1670 کیلو بایت |
تعداد صفحات فایل | 110 |
این پاورپوینت در مورد الگوریتم کلونی مورچه ها در 110 اسلاید زیبا شامل:الگوریتم کلونی مورچه ها،الگوریتم مورچه،الگوریتم بهینه سازی مورچه،Ant Colony Optimization Algorithm ،شبکه عصبی،بهینهسازی گروه مورچهها یا ACO ،الگوریتم کلونی مورچه، و... می باشد.
بهینهسازی گروه مورچهها یا ACO همانطور که میدانیم مسئله یافتن کوتاهترین مسیر، یک مسئله بهینه سازیست که گاه حل آن بسیار دشوار است و گاه نیز بسیار زمانبر. برای مثال مسئله فروشنده دوره گرد را نیز میتوان مطرح کرد. در این روش(ACo)، مورچههای مصنوعی بهوسیلهٔ حرکت بر روی نمودار مسئله و با باقی گذاشتن نشانههایی بر روی نمودار، همچون مورچههای واقعی که در مسیر حرکت خود نشانههای باقی میگذارند، باعث میشوند که مورچههای مصنوعی بعدی بتوانند راهحلهای بهتری را برای مسئله فراهم نمایند. همچنین در این روش میتوان توسط مسائل محاسباتی-عددی بر مبنای علم احتمالات بهترین مسیر را در یک نمودار یافت.
300pxاین
روش که از رفتار مورچهها در یافتن مسیر بین محل لانه و غذا الهام گرفته شده؛ اولین بار در ۱۹۹۲ توسط مارکو دوریگو (Marco Dorigo) در پایان نامه دکترایش مطرح شد.
مقدمه
الگوریتم کلونی مورچه الهام گرفته شده از مطالعات و مشاهدات روی کلونی مورچه هاست. این مطالعات نشان داده که مورچهها حشراتی اجتماعی هستند که در کلونیها زندگی میکنند و رفتار آنها بیشتر در جهت بقاء کلونی است تا درجهت بقاء یک جزء از آن. یکی از مهمترین و جالبترین رفتار مورچهها، رفتار آنها برای یافتن غذا است و بویژه چگونگی پیدا کردن کوتاهترین مسیر میان منابع غذایی و آشیانه. این نوع رفتار مورچهها دارای نوعی هوشمندی تودهای است که اخیراً مورد توجه دانشمندان قرار گرفته است در دنیای واقعی مورچهها ابتدا به طور تصادفی به این سو و آن سو میروند تا غذا بیابند. سپس به لانه بر میگردند و ردّی از فرومون (Pheromone) به جا میگذارند. چنین ردهایی پس از باران به رنگ سفید در میآیند و قابل رویت اند. مورچههای دیگر وقتی این مسیر را مییابند، گاه پرسه زدن را رها کرده و آن را دنبال میکنند. سپس اگر به غذا برسند به خانه بر میگردند و رد دیگری از خود در کنار رد قبل میگذارند؛ و به عبارتی مسیر قبل را تقویت میکنند. فرومون به مرور تبخیر میشود که از سه جهت مفید است:
لذا وقتی یک مورچه مسیر کوتاهی (خوبی) را از خانه تا غذا بیابد بقیهٔ مورچهها به احتمال زیادی همان مسیر را دنبال میکنند و با تقویت مداوم آن مسیر و تبخیر ردهای دیگر، به مرور همهٔ مورچهها هم مسیر میشوند. هدف الگوریتم مورچهها تقلید این رفتار توسط مورچههایی مصنوعی ست که روی نمودار در حال حرکت اند. مسئله یافتن کوتاهترین مسیر است و حلالش این مورچههای مصنوعی اند.
از کابردهای این الگوریتم، رسیدن به راه حل تقریباً بهینه در مسئله فروشنده دورهگرد است. به طوری که انواع الگوریتم مورچهها برای حل این مسئله تهیه شده. زیرا این روش عددی نسبت به روشهای تحلیلی و genetic در مواردی که نمودار مدام با زمان تغییر کند یک مزیت دارد؛ و آن این که الگوریتمی ست با قابلیت تکرار؛ و لذا با گذر زمان میتواند جواب را به طور زنده تغییر دهد؛ که این خاصیت در روتینگ شبکههای کامپیوتری و سامانه حمل و نقل شهری مهم است.
در مسئله فروشنده دوره گرد باید از یک شهر شروع کرده، به شهرهای دیگر برود و سپس به شهر مبدأ بازگردد بطوریکه از هر شهر فقط یکبار عبور کند و کوتاهترین مسیر را نیز طی کرده باشد. اگر تعداد این شهرها n باشد در حالت کلی این مسئله از مرتبه (n-1)! است که برای فقط ۲۱ شهر زمان واقعاً زیادی میبرد:
روز۱۰۱۳*۷/۱ = S۱۰۱۶*۴۳۳/۲ = ms۱۰*۱۰۱۸*۴۳۳/۲ =!۲۰
با انجام یک الگوریتم برنامه سازی پویا برای این مسئله، زمان از مرتبه نمایی بدست میآید که آن هم مناسب نیست. البته الگوریتمهای دیگری نیز ارائه شده ولی هیچکدام کارایی مناسبی ندارند. ACO الگوریتم کامل و مناسبی برای حل مسئله TSP است.
مسئله فروشنده دوره گرد
مزیتهای ACO
<تبخیر شدن فرومون> و <احتمال-تصادف>به مورچهها امکان پیدا کردن کوتاهترین مسیر را میدهد. این دو ویژگی باعث ایجاد انعطاف در حل هرگونه مسئله بهینهسازی میشوند. مثلاً در گراف شهرهای مسئله فروشنده دوره گرد، اگر یکی از یالها (یا گرهها) حذف شود الگوریتم این توانایی را دارد تا به سرعت مسیر بهینه را با توجه به شرایط جدید پیدا کند. به این ترتیب که اگر یال (یا گرهای) حذف شود دیگر لازم نیست که الگوریتم از ابتدا مسئله را حل کند بلکه از جایی که مسئله حل شده تا محل حذف یال (یا گره) هنوز بهترین مسیر را داریم، از این به بعد مورچهها میتوانند پس از مدت کوتاهی مسیر بهینه (کوتاهترین) را بیابند.
کاربردهای ACO
از کاربردهای ACO میتوان به بهینه کردن هر مسئلهای که نیاز به یافتن کوتاهترین مسیر دارد، اشاره نمود:
۱. مسیر یابی داخل شهری و بین شهری.
۲. مسیر یابی بین پستهای شبکههای توزیع برق ولتاژ بالا.
۳. مسیر یابی شبکههای کامپیوتری. ۴-استفاده ازوب. ۵-استفاده ازACOدربهینه سازی شبکههای توزیع آب و…
الگوریتم
پروسهٔ پیدا کردن کوتاهترین مسیر توسط مورچهها، ویژگیهای بسیار جالبی دارد، اول از همه قابلیت تعمیم زیاد و خود- سازمانده بودن آن است. در ضمن هیچ مکانیزم کنترل مرکزی ای وجود ندارد. ویژگی دوم قدرت زیاد آن است. سیستم شامل تعداد زیادی از عواملی است که به تنهایی بیاهمیت هستند بنابراین حتی تلفات یک عامل مهم، تأثیر زیادی روی کارایی سیستم ندارد. سومین ویژگی این است که، پروسه یک فرایند تطبیقی است. از آنجا که رفتار هیچکدام از مورچهها معین نیست و تعدادی از مورچهها همچنان مسیر طولانیتر را انتخاب میکنند، سیستم میتواند خود را با تغییرات محیط منطبق کند و ویژگی آخر اینکه این پروسه قابل توسعه است و میتواند به اندازهٔ دلخواه بزرگ شود. همین ویژگیها الهام بخش طراحی الگوریتمهایی شدهاند که در مسائلی که نیازمند این ویژگیها هستند کاربرد دارند. اولین الگوریتمی که بر این اساس معرفی شد، الگوریتم ABC بود. چند نمونه دیگر از این الگوریتمها عبارتند از: AntNet,ARA,PERA,AntHocNet.
انواع مختلف الگوریتم بهینهسازی مورچگان
در پایین تعدادی از انواع شناخته شده از الگوریتم بهینهسازی مورچگان را معرفی میکنیم:
۱- سیستم مورچه نخبگان: در این روش بهترین راه حل کلی در هر تکرار فرمون آزاد میکند. همچنین این روش برای تمام مورچههای مصنوعی باید انجام شود.
۲- سیستم مورچه ماکسیموم – مینیمم: یک مقدار کمینه و بیشینه برای فرمون تعیین کرده و فقط در هر مرحله بهترین جواب این مقدار را آزاد میکند و تمام گرههای مجاور ان به مقدار فرمون بیشینهمقدار دهی اولیه میشوند.
۳- سیستم کلونی مورچه: که در بالا توضیحات کافی داده شده است.
۴- سیستم مورچه بر اساس رتبه: تمام راه حلهای بدست آماده بر اساس طول جواب رتبهبندی میشوند و بر اساس همین رتبهبندی مقدار فرمون آزاد سازی شده توسط آنها مشخص خواهد شد و راه حل با طول کمتر از راه حل دیگر با طول بیشتر مقدار فرمون بیشتری آزاد میکند.
۵ - سیستم مورچه متعامد مداوم: در این روش مکانیزم تولید فرمون به مورچه اجازه میدهد تا برای رسیدن به جواب بهتر و مشترک با بقیه مورچهها جستجو انجام دهد با استفاده از روش طراحی متعامد مورچه میتواند در دامنه تعریف شده خود به صورت مداوم برای بدست آوردن بهترین جواب جستجو کند که این عمل به هدف رسیدن به جواب بهینه و صحیح ما را نزدیک میکند. روش طراحی متعامد میتواند به دیگر روشهای جستجو دیگر گسترش پیدا کنند تا به مزیتهای این روشهای جستجو اضافه کند.
دسته بندی | الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 138 کیلو بایت |
تعداد صفحات فایل | 7 |
دانلود مقاله رشته مخابرات
روشی جدیدجهت آموزش شبکه عصبی MLP با استفاده ازقوانین فازی
فایل بصورت pdf می باشد
دسته بندی | الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 256 کیلو بایت |
تعداد صفحات فایل | 8 |
مقاله کنترل هوشمند وضعیت موتور DC
فایل بصورت pdf می باشد
دسته بندی | برنامه نویسی |
فرمت فایل | doc |
حجم فایل | 453 کیلو بایت |
تعداد صفحات فایل | 22 |
پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک
خلاصه
مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .
این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .
اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .
از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .
این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .
- مقدمه
شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .
علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .
یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .
موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .
این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .
یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .
در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .
دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .
ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .
برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .
در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .
شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .
مسئله اصلی که هنوز باید حل شود آموزش است .
حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .
در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .
آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .
دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .
اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .
بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .
اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .
برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .
این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .
با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .
همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .
- مقدمه
شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .
علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .
یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .
موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .
این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .
یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .
در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .
دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .
ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .
برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .
در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .
شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .
مسئله اصلی که هنوز باید حل شود آموزش است .
حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .
در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .
آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .
دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .
اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .
بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .
اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .
برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .
این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .
با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .
همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .