دسته بندی | صنایع نفت و گاز |
فرمت فایل | doc |
حجم فایل | 4944 کیلو بایت |
تعداد صفحات فایل | 178 |
فهرست
علائم توضیحات واحد
حرارت مخصوص kj/kg C
گرمای ویژه هوا kj/kg C
گرمای ویژه گازهای حاصل از احتراق kj/kg C
حرارت مخصوص مخلوط هوا kj/kg C
حرارت مخصوص بخار kj/kg C
ضریب عملکرد --
C.V حجم کنترل --
F ضریب تصحیح --
G ماکزیمم دبی عبوری به ازاء کمترین مساحت ورودی kg/m2s
Gpm واحدی دبی (گالن بر دقیقه) --
گرمای نهان تبخیری kj/kg
hl تغییر آنتالپی حرارتی ذوب، تبخیر و تصعید kj/kg
LHV ارزش حرارتی پایین سوخت kj/kg
دبی بخار آب تقطیر شده kg/s
دبی بخار اضافی تولید شده kg/s
دبی واقعی سوخت kg/s
دبی ایدهآل سوخت kg/s
دبی گاز خروجی بدون سرمایش kg/s
دبی گاز خروجی با سرمایش kg/s
دبی جرمی بخار آب تقطیر شده kg/s
دبی بخار تولیدی بویلر بازیاب kg/s
دبی بخار آب موجود در هوا kg/s
n پلی تروپیک --
عدد نوسلت --
فشار جزئی هوا kpa
فشار اتمسفر kpa
فشار بخار اشباع kpa
عدد پراندل --
مجموع فشارهای ورودی
فشار جزئی بخارآب
Q مقدار حرارت انتقالی بر اثر تغییر فاز مبرد KW
حرارت افزوده شده به سیکل kj/kg
بار سرمایش KW
حرارت پس داده شده به سیکل kj/kg
حرارت مخصوص KW
حرارت نهان kj/kg
نسبت فشار --
Re عدد رینولدز --
SCF مصرف ویژه سوخت KWh
T دمای استاتیکی طبقات کمپرسور C
Tamb دمای هوای محیط C
دمای ادیاباتیک شعله C
دمای هوای ورودی قبل از طبقات سوپرسونیک C
V سرعت مجاز بین شینها ft/S
کار واقعی کمپرسور kj/kg
کار سیکل ترکیبی kj/kg
کار خالص سیکل واقعی kj/kg
کار خالص سیکل تئوری kj/kg
کار پمپ kj/kg
کار تئوری توربین kj/kg
کار واقعی توربین kj/kg
کار توربین بخار kj/kg
X غلظت محلول جاذب % ثابت آدیاباتیک --
افت فشار در اتاق احتراق پاسکال
میزان موثر بدون خنککاریمیانی %
راندمان کلی سیکل %
راندمان بویلر بازیاب %
راندمان کمپرسور %
راندمان فین %
راندمان ایزونتروپیک %
راندمان پمپ %
راندمان بازیاب %
راندمان پلی تروپیک کمپرسور %
راندمان پلی تروپیک توربین %
راندمان توربین گاز %
راندمان حرارتی سیکل تئوری %
راندمان حرارتی سیکل واقعی %
ویسکوزیته Kg/ms
چگالی Kg/m3
چگالی هوای ورودی Kg/m3
چگالی متوسط هوا Kg/m3
چگای هوای خروجی Kg/m3
رطوبت نسبی %
نسبت رطوبت بخار آب موجود در هواKg/هوای خشک Kg
کلیات و اجزاء توربین گاز
1-1- توربین گاز:
توربین گاز از لحاظ مراحل کار و نحوة عملکرد؛ شباهت زیادی با موتورهای احتراق داخلی دارد:
اولا: چهار مرحلة مکش؛ تراکم؛ احتراق و انبساط (قدرت) و تخلیه در توربینهای گاز صورت میگیرد منتهی در موتورهای احتراق داخلی؛ این مراحل؛ در هر یک از سیلندرها ولی به ترتیب انجام میشود؛ در حالیکه در توربینهای گاز؛ در یک از مراحل فوق الذکر در قسمت خاصی از واحد گازی در توربینهای برای همان منظور در نظر گرفته شده است؛ صورت میگیرد. مثلا: تراکم همواره در یک قسمت و احتراق همواره در یک قسمت دیگر در حال انجام است.
ثانیأ: در توربینهای گاز نیز؛ این انرژی شیمیائی نهفته در سوخت های فسیلی است که نهایتأ بصورت انرژی مکانیکی (گشتاور) ظاهر می گردد.
و ثالثأ: در توربینهای گاز نیز سیال عاملی که باعث چرخش محور می گردد ؛ گاز داغ (هوای فشرده محترق ) می باشد؛ و همین وجه تسمیة توربینهای گازی میباشد.
مطالب فوق؛ با توضیح اجزاء توربین گاز؛ و ترتیب انجام کار در این نوع واحد تولید انرژی مکانیکی روشنتر خواهد شد.
اجزاء توربین گاز عبارتند از:
1-1-1ـ کمپرسور
1-1-2ـ اتاق احتراق
1-1-3ـ توربین
ترتیب قرار گرفتن اجزاء فوق ؛ در رابطه با یکدیگر در شکل زیر بوضوح پیدا است :
شکل (1-1): اجزاء اصلی ساختمانی توربین گاز
از اجزاء فوق کمپرسور؛ همواره وظیفة مکش و متراکم کردن هوا را بعهده دارد. هوای متراکم به اتاق (اتاقهای) احتراق ؛ هدایت شده و در اتاق احتراق با پاشیده شدن سو خت و ایجاد جرقه (البته ایجاد جرقه تنها در ابتدای احتراق لازم است و پس از برقراری شعله ؛ به علت بالا بودن در اتاق احتراق ؛ شعله حفظ می گردد)؛ محترق می گردد. گاز داغ حاصل از احتراق هوای متراکم در اتاق احتراق؛ روی پرده های توربین هدایت می شود و با به گردش در آوردن توربین؛ انرژی مکانیکی لازم برای چرخاندن بار متصل به توربین را تامین می کند. ما حصل احتراق ؛ پس دادن انرژی خود به خود به توربین؛ از طریق اگزوز به آتمسفر تخلیه میگردد. با مقایسه ترتیب کار در توربین گاز با ترتیب کار در موتوری احتراق داخلی ؛ مشاهده می شود که توربیت های گاز از نظر اساس کار ؛ چیز جدیدی نیستند و تنها از نظر ساختمان و نحوة عمل ؛ تفاوتهایی با موتورهای احتراق داخلی پیدا می کنند. در شکل )1-2) ؛ نمای کلی جانبی یک نوع توربین گاز؛ (AEG ؛ ساخت آلمان؛ با قدرت 25 مگاوات ( برای آشنایی با ترتیب قرار گرفتن اجزاء مختلف ؛ در توربیثن های گاز ؛ نشان داده شده است .
شکل (1-2) : نمای کلی جانبی یک توربین گاز AEG
1-1-1- کمپرسور:
کمپرسور استفاده شده در توربینهای گاز صنعتی (توربین های گاز که برای تولید برق بکار برده می شوند)؛ معمولأ از نوع جریان محوری می باشند؛ به این معنی که هوا در امتداد محور کمپرسور با رانده شدن بطرف جلو و کم شدن سطح مقطع فشرده میشود. این نوع کمپرسورها میتوانند حجم هوای بسیار زیادی متراکم کنند. نیروی محرکة کمپرسور در واحدهای گازی؛ در ابتدای راه اندازی؛ توسط موتور راه نداز (دیزلی یا الکتریکی) و پس از خود کفا شدن توربین؛ توسط نیروی گشتاوری خود توربین تامین می شود. (زیرا توربین و کمپرسور هم محور هستند) و حدودا دو سوم از نیروی گشتاوری توربین صرف گرداندن کمپرسور و تنها آن صرف گردش بار وصل به محور توربین میشود.
علت اصلی استفاده از کمپرسور؛ در توربین های گاز ؛ تامین هوای فشرده برای سیستم احتراق میباشد؛ لکن یکسری انشعابهای فرعی نیز از بعضی مراحل کمپرسور گرفته می شود که معمولا فشار کمتری از خروجی کمپرسور دارند. موارد استفاده این انشعابها عبارتند از:
- کنترل شیرهای بخصوص بنام بلید والو که وظیفة تنظیم هوای کمپرسور در دور متغیر را بعهده دارند.
- آببندی یا تاقانها (یاتاقانهای اصلی توربین گاز) و کنترل شیرهای هوایی (شیرهایی که توسط هوای فشرده کنترل می شوند).
- خنک کردن قسمت های مختلف توربین که در مسیر عبور گاز داغ هستند .
- اتمیزه کردن (پودر کردن ) سوخت مایع - جهت بهتر مخلوط شدن آن با هوا در اتاق احتراق و در نتیجه احتراق بهتر.
کمپرسورهای جریان محوری از تعدادی پره های ثابت و متحرک تشکیل شده اند که به صورت مراحل پشت سر هم در طول محور قرار گرفتهاند. (هر مرحله شامل یک چرخ پرة ثابت و یک چرخ پرة متحرک می باشد) تعداد مراحل کمپرسور به فشار خروجی تقاضا شده و حجم آن به دبی (حجم هوای عبوری در واحد زمان) تقاضا شده بستگی دارد. هوا در مسیر عبور خود از ورودی به خروجی کمپرسور؛ بین پرههای ثابت و متحرک تبادل میشود تا به شرایط مطلوب به خروجی برسد. کار پرههای ثابت؛ دادن زاویة صحیح به هوا و تبدیل سرعت به فشار می باشد؛ در حالیکه و وظیفة پرههای متحرک دادن سرعت به هوا و راندن آن بطرف جلوی کمپرسور می باشد. کمپرسور؛ با یک مرحله پرههای ثابت شروع می شود که در بعضی از توربینهای گاز؛ زاویة این پره ها قابل تنظیم میباشد و در ابتدای راه اندازی که کمپرسور توان عبور دادن حجم هوای زیاد را ندارد؛ هوا توسط این پره ها ی قابل تنظیم ؛ تحت زاویه بسته به کمپرسور وارد میشود و پس از رسیدن به حدود دور نهایی گ زاویة پره های مزبئر باز میشود. در این صورت به پره های مزبور پره های هادی ورودی کمپرسور میگویند.
در دور ثابت؛ به علت راندن هوا به جلو توسط کمپرسور؛ طبق قانون سوم نیوتن (که هر عملی؛ عکس العملی دارد؛ مساوی و مختلف الجهت با آن)؛ یک نیرو به طرف عقب به محور کمپرسور وارد میگردد؛ برعکس در دور متغییر مثلا هنگام از کار اندازی واحد؛ بعلت کاهش ناگهانی حجم سیال و سرعت آن؛ نیرویی به طرف جلو به کمپرسور وارد میشود. این نیروها که در جهت محور هستند بنام نیروی تراست معروف میباشند و توسط یاتاقانهای تراست (که مخصوص تحمل نیروهای محوری هستند) خنثی میشوند .
در شکل (1-3)؛ مقطع طولی محور یک کمپرسور جریان محوری با پرههای متحرک که روی آن سوار شدهاند؛ نشان داده شده است. ( کمپرسور مزبور متعلق به واحد 85 مگاواتی میتسوبیشی بوده دارای 17 مرحله میباشد).
شکل ( 1-3 )
درشکل(1-4)نیزهمان محور کمپرسور؛ منتهی بدون پره و در حالیکه نحوة جازدن پره های متحرک روی محور؛ در درون شیارهای دیسکها؛ و محکم شدن آنها توسط یک فنر و یک پین (pin) بخوبی واضح است، نشان داده شده است.
شکل (1-4)
در شکل(1-5)، پرههای ثابت کمپرسور مذکور، که به صورت نیم چرخهایی هستند، نشان داده شده است.
شکل(1-5)
اجزاء اصلی سیستم احتراق عبارتند از:
1ـ محفظه یا محفظههای احتراق (بعضی واحدهای گازی، یک، برخی دو و برخی دیگر تعداد بیشتری محفظه احتراق دارند)
2ـ نازل سوخت (سوخت پاش)
3ـ جرقه زن
4ـ شعله بین
5ـ لولههای مرتبطه شعله
6ـ قطعة انتقال دهندة گاز داغ
1-1-2-1- محفظه احتراق:
هواپس از خارج شدن از کمپرسور؛ وارد محفظه یا محفظههای احتراق میگردد. در شکل (1-7)؛ یک محفظة احتراق که متعلق به واحد 85 مگاواتی میتسوبیشی (با 18 اتاق احتراق) میباشد؛ نشان داده شده است.
همانطور که در شکل (1-6)؛ نشان داده شده است؛ محفظه احتراق به دو ناحیه تقسیم میشود: یکی ناحیة احتراق و دیگر ناحیه ترقیق. در ناحیة احتراق همانگونه که مشخص است؛ سوخت و هوا با هم مخلوط شده و عمل احتراق صورت میگیرد. در این ناحیه، هر هوایی که وارد محفظه احتراق میشود، هوای احتراق است و در فعل و انفعال احتراق شرکت میکند. در این ناحیه، مقداری هوا از طریق شعله پخش کن که در پشت نازل سوخت قرار دارد، وارد محفظه میگردد (که وظیفه آن ایجاد حالت دورانی و گردابهای احتراق میباشد که راندمان احتراق را افزایش میدهد)، به مقداری هوا نیز از طریق سوراخهای ریز دیواره محفظه و همچنین مقداری هوا از طریق سوراخهای درشتی که در این ناحیه قرار گرفتهاند، وارد محفظة احتراق میگردد.
در ناحیه ترقیق، محصولات احتراق ناحیه اول، که همان گازهای داغ میباشد، توسط هوای اضافی، رقیقتر شده و دمای آن پایین آورده میشود. در اینجا مقداری هوا از طریق سوراخهای ریز دیواره محفظه و مقداری نیز از راه سوارخهای درشت که در این ناحیه قرار دارند، وارد محفظه میگردند.
علت لزوم ترقیق هوا، بالا بودن دمای گاز حاصل از احتراق است (برای یک توربین با قدرت 25Mw، حدود 1200 درجه سانتیگراد) که هدایت این گاز با دمای بالا روی پرههای توربین میتواند باعث صدمه زدن به پرهها و سایر قطعاتی که در معرض گاز داغ قرار دارند، بشود دمای گازحاصل از احتراق، پس از ترقیق، در توربینی به قدرت 25Mw، به حدود 940 درجه سانتیگراد باید توجه داشت که محفظه احتراق داخل یک محفظه دیگر قرار میگیرد و هوای خروجی کمپرسور در خلاف جهت حرکت گاز حاصل از احتراق (که از طرف نازل به طرف توربین میباشد) ، وارد فاصله بین محفظه احتراق و محفظه رویی میشود تا اولا بصورت عایقی بین اتاق احتراق و پوسته خارجی عمل کرده و ثانیا بدنه محفظه احتراق و قطعه انتقال دهنده گاز داغ را خنک کند و ثالثا هوای لازم جهت احتراق و ترقیق را فراهم آورد.
1-1-2-2- نازل سوخت:
نازل سوخت یا سوختپاش، که وظیفه پاشیدن سوخت در اتاق احتراق را دارد، ممکن است مخصوص یک سوخت یا دو سوخت مختلف (دوگانه) طراحی شده باشد. در صورت استفاده از دو سوخت مختلف به طور همزمان، نازل دوگانه قادر است درصدهای تعیین شده از دو سوخت را با هم در اتاق احتراق بپاشد.
درهمین جا خوب است اشارهای هم به اثر نوع سوخت مصرفی واحد گازی روی عمر قطعات واقع در مسیر گاز داغ داشته باشیم. در واقع هر قدر سوخت سنگینتر باشد، به علت اثر خوردگی شیمیایی که روی قطعات مسیر گاز داغ دارد، بیشتر از عمر قطعات میکاهد مثلا اگر دو واحد مشابه که یکی با سوخت گازوئیل و دیگری با سوخت گاز کار میکنند را در نظر بگیریم، عمر قطعات واحد اول قطعات از عمر قطعات واحد دوم کمتر خواهد بود، و اگر واحد سومی را در نظر بگیریم که با سوخت مخلوط (گاز و گازوئیل) کار میکند، عمر قطعات آن از هر دو واحد قبلی کمتر خواهد بود.
سوخت مایع (معمولا گازوئیل) به علت غلظت بالاتر از گاز، برای آنکه به خوبی با هوا، در اتاق احتراق مخلوط شود و احتراق خوبی داشته باشیم، باید در موقع ورود به نازل فشار بالایی داشته باشد یا اینکه به همراه آن هوای اتمیزه کننده نیز داشته باشیم را در پودر کردن سوخت، اختلاط خوب آن با هوا و در نتیجه داشتن احتراق خوب کمک کند. در ضمن، معمولا در زمانی که واحد با سوخت گاز کار میکند، ممکن است به مرور زمان، به علت ناخالصیهای موجود در سوخت، ذرات حاصل از احتراق، دهانه نازل گازوئیل را که تنگتر است، مسدود کند و در تبدیل از سوخت گاز به گازوئیل دچار اشکال شویم. برای همین منظور، در هنگام استفاده از سوخت گاز تنها معمولا با عبور گاز از مسیر سوخت گازوئیل در نازل، مجرای مربوطه را بازنگه میدارند. به گازی که این مسئولیت را به عهده دارد، گاز جاروب کننده میگویند.
1-1-2-3- جرقه زن:
وظیفه جرقه زن یا جرقه زنها این است که در زمان مناسب که مربوط میشود به مراحل ترتیبی راهاندازی واحد گازی، (معمولا در حدود 20% دور نامی، یعنی زمانی که با عبور هوا با فشار مناسب، مسیر گازداغ از اجرام و مواد قابل احتراق جاروب شده است)، در اتاقهای احتراق جرقه ایجاد کنند تا احتراق آغاز گردد. ساختمان و طرز کار جرقه زن، بسیار شبیه به شمع موتور اتومبیل میباشد، (با دادن ولتاژ بالایی چندین کیلوولت بین دو الکترود جرقه زن، جرقه ایجاد میشود). معمولا برای اطمینان بالاتر، از دو جرقه زن در مجموعه اتاقهای احتراق استفاده میشود. معمولا ساختمان جرقه زنها طوری است که با بوجود آمدن شعله و بالا رفتن فشار در داخل اتاق احتراق، الکترودها جرقه زن بیرون رانده میشوند تا از معرض شعله دور باشد.
1-1-2-4- شعله بین :
وظیفه شعله بین (که معمولا تعداد آن در مجموعه اتاقهای احتراق دو شعله بین میباشد)، آن است که وجود یا عدم وجود شعله را در اتاق یا اتاقهای احتراق به قسمت کنترل واحد گازی و نیز به اپراتور واحد، گزارش کند. در واقع هنگام راهاندازی در حدود 20% دور نامی که جرقه زده میشود در صورت برقراری اجازه انجام مراحل بعد داده میشود و در غیر اینصورت، چند بار دیگر عمل جرقه زدن تکرار میگردد و در صورت عدم برقراری شعله، واحد گازی بطور اتوماتیک خاموش میگردد، یعنی سوخت قطع میشود (و اصطلاحا واحد تریپ داده میشود). و درهنگام کار عادی واحد نیز، در صورتیکه هر دو شعله بین گزارش دهنده که شعله محو شده است، واحد تریپ داده میشود. تریپ واحد در هر دو صورت فوق بخاطر جلوگیری از جمع دن سوخت در اتاقهای احتراق و وارد شدن آن به مسیر گاز داغ و خطرات ناشی از آتشسوزی میباشد (در هنگام کار عادی واحد، بعلت داغ بودن قطعات مسیر گازداغ، در صورتیکه سوخت در اتاقهای احتراق جمع شود و وارد توربین گردد، احتمال آتش سوزی بالاست).
1-1-2- 5 - لوله های مرتبطة شعله:
وظیفه لولههای مرتبطة شعله، که بین اتاقهای احتراق مجاور قرار میگیرد، البته در واحدهای گازی که از چند اتاق احتراق استفاده میکند، انتقال شعله از اتاقهای احتراق که در آنها جرقه زده میشود به اتاقهای احتراق دیگر میباشد. در شکل زیر، ترتیب قرار گرفتن اتاقهای احتراق واحد گازی AEG (25 مگاواتی)، دور محور کمپرسور ـ توربین، و نیز جرقهزنها، شعله بینها، لولههای مرتبطة شعله، پوسته داخلی و خارجی و اتاقهای احتراق و شیراستارت ناموفق (که زیر پایین ترین اتاق احتراق نصب شده و زمانیکه در برقراری شعله در اتاقهای احتراق در هنگام راهاندازی واحد توفیق حاصل نمیشود، سوخت جمع شده در اتاقهای احتراق را تخلیه مینماید) نشان داده شده است.
شکل (1-7): نحوه قرارگیری اتاقهای احتراق در یک توربین گاز
1-1-2-6- قطعه انتقال دهندة گاز داغ
این قطعه، به انتهای اتاق احتراق وصل میشود و وظیفه آن هدایت گاز داغ حاصل از احتراق (البته پس از ترقیق) روی پرههای توربین میباشد.
در شکل (1-8)، یک نمونه قطعه انتقال دهنده که مربوط به واحد 85 مگاواتی میتسوبیشی میباشد نشان داده شده است.
شکل (1-8) : شکل یک قطعه انتقال دهنده
در شکل (1-9)، مجموعه یک اتاق احتراق و قطعه انتقال دهنده، که به هم متصل شدهاند و وضعیت نسبی آنها در واحد گازی در رابطه با کمپرسور و توربین نشان داده شده است.
(شکل مربوط است به واحد 85 مگاواتی میتسوبیشی). قابل ذکر است که اتاق احتراق و قطعه انتقال دهنده، به کمک مترهای مخصوصی به نام متر آببندی که روی انتهای اتاق احتراق قرار دارد و در شکل (1-6) به خوبی واضح است، به یکدیگر وصل و محکم میشود.
شکل (1-9) : مجموعه یک اتاق احتراق به همراه یک قطعه انتقال دهنده
در شکل (1-10) مجموعة کاملی از یک اتاق احتراق، قطعه انتقال دهنده گاز داغ مسیر ورود هوای خروجی کمپرسور به فاصله بین پوسته خارجی و لایه داخلی اتاق احتراق، نواحی احتراق و ترقیق مسیرهای هوای مربوط به هر ناحیه، جرقه زن نازل سوخت دوگانه، و مسیر عبور داغ در داخل اتاق احتراق و قطعه انتقال دهنده به طرف توربین نشان داده شده است. (شکل مربوط به واحدهای گازی GE جنرال الکتریک میباشد).
شکل (1-10) : مجموعه کامل یک اتاق احتراق
1-1-3- توربین گاز:
گازهای داغ حاصل احتراق، پس از عبور از قطعه انتقال دهنده، وارد توربین شده، انرژی مفید خود را به پرههای توربین داده، منبسط میشوند و از فشار و دمایشان کاسته شده، سپس از طریق اگزوز به اتمسفر تخلیه میگردند.
گازهای داغ، در توربین، ابتدا با پرههای ثابت برخورد کرده زاویه ایشان تصحیح شده به سرعتشان افزوده میگردد سپس به پرههای متحرک توربین برخورد میکند انرژی جنبشی خود را به آنها منتقل کرده، در آنها انرژی مکانیکی بصورت نیروی گشتاوری ایجاد میکند و این امر تا مرحله آخر توربین ادامه دارد.
در شکل (1-11)، مقطع طولی محور توربین واحد گازی میتسوبیشی (85 مگاواتی) در حالیکه پرههای متحرک و مراحل توربین (چهار مرحله) در آن بخوبی واضح هستند نشان داده شده است.
شکل (1-11) : مقطع طولی محور یک توربین گاز
توربین نیز مانند کمپرسور از یک سری چرخ پرههای ثابت و متحرک تشکیل شده است. چرخ پرههای متحرک بر روی دیسکهای توپری سوار میشوند که توسط پیچهای طویلی به هم متصل میباشد. پرههای ثابت توربین، هر چند تا به صورت یک واحد (یک Segment) بوده و در شیارهای پوسته توربین به صورت کشویی جا میروند. در شکل (1-12)، دیسکها و چرخ پرههای متحرک توربین گازی میتسوبیشی (85 مگاواتی) قبل از اتصال به یکدیگر، نشان داده شدهاند. در ضمن پرهها، هنوز روی چرخها سوار نشدهاند.
شکل (1-12):دیسکها وچرخ پرههای متحرک توربین گازی میتسوبیشی (85 مگاواتی)
در توربین نیز، مثل کمپرسور، مسئله نیروی تراست (نیروی در امتداد محور) مطرح است در توربین به علت انبساطی که صورت میگیرد (یعنی فشار خروجی پره از فشار ورودی به پره کمتر است). نیرویی در جهت حرکت سیال به پرهها وارد میگردد که همان نیروی تراست توربین است، بستگی به دور توربین دارد و هر قدر دور بالاتر رود ؛ مقدار مقدار نیروی تراست نیز بیشتر می شود ولی جهت آن همواره؛ همان جهت حرکت سیال است.
اکنون بجاست که نیروی تراست مجموعة توربین، کمپرسور را بررسی کرده جهت آن را دریابیم، زیرا توربین و کمپرسور هم محور هستند و مجموع نیروهای تراست آنهاست که روی یاتاقان تراست اثر میکند.
درزمانکارعادی واحد،نیروی تراست توربین در جهت حرکت سیال و نیروی تراست کمپرسور در خلاف جهت حرکت سیال میباشد. ولی نیروی تراست کمپرسور بخاطر تعداد بیشتر مراحل، از لحاظ مقدار بیشتر است لذا مجموعا نیروی تراست در خلاف جهت حرکت سیال خواهد بود که توسط یاتاقان تراست موسوم به بار خنثی میگردد.
در دو متغیر(درهنگام راهاندازی واحد)، که نیروی تراست توربین و کمپرسور در جهت حرکت سیال است، طبیعتا مجموع این نیروها نیز در جهت حرکت سیال خواهد بود وظیفه خنثی کردن این نیرو بعهدة یاتاقان تراست موسوم به بی بار است.
در شکل (1-13)، مقطع طولی توربین گاز میتوبیشی که در آن اجزاء اصلی توربین گاز، بخوبی مشخص شدهاند، دیده میشود.
گاز داغ پس از عبور از مراحل توربین که در واحدهای گازی مختلف. به تناسب قدرت خروجی، متفاوت میباشد، به اگزوز هدایت میگردد. گاز خروجی از اگزوز دارای دمای بالایی است (برای یک توربین با قدرت 25Mw، بالای 500c میباشد) و به همین دلیل حاوی مقدار زیادی انرژی خواهد بود (بخاطر اینکه دبی آن نیز بالاست)، این انرژی در توربینهای با طراحی ساده، به آتمسفر تخلیه میشود و استفادهای از آن نمیشود.
اصطاحا طرح سادة توربین گاز را با شرح فوق، سیکل ساده میگویند و بخاطر دفع مقدار زیادی انرژی حرارتی از اگزوز، این طرح دارای راندمان پایین میباشد.
علاوه بر اجزاء اصلی، یک سری اجزاء فرعی نیز در رابطه با توربین گاز استفاده میشوند که در زیر به آنها اشارهای میکنیم:
(a اجزاء راهانداز
(b جعبه دندهها
(c کوپلینگها
(d کلاچها
(e یاتاقانها
(f اجزاء دیگر
1-2-1- اجزاء راهانداز:
از آنجاکه توربین گاز بدوا خود قادر به چرخاندن محور کمپرسور و تراکم هوا و در نتیجه احتراق و ایجاد گشتاور روی محور توربین نیست، لذا به یک وسیله راه انداز، جهت ایجاد چرخش اولیه در محور توربین کمپرسور نیاز است تا پس از خودکفایی، خود توربین، این وظیفه را بعهده بگیرد در اینجابدنیست بعلت شباهت مساله، اشارهای به موتورهای احتراق داخلی داشته باشیم. همانگونه که واضح است، اینگونه موتورها نیز در ابتدای راه اندازی احتیاج به یک استارتر (موتور استارتر) دارند تا یک چرخش اولیه در محور ایجاد کند و در نتیجه مراحل چهارگانه در سیلندرها آغاز شود و با احتراق در سیلندرها قدرت لازم جهت چرخاندن میل لنگ توسط خود موتور تامین گردد تا سپس موتور استارتر وقتی که دیگر نیازی به آن نیست، خاموش گردد.
در توربین های گازی نیز مساله به همین صورت مطرح است،راه اندازی توربین های گاز توسط یک موتور دیزل یا یک موتور الکتریکی صورت می گیرد. (در بعضی از واحدهای گازی نیز به کمک خود ژنراتور وصل به محور توربین که در این حالت بصورت یک موتور کار می کند و از برق شبکه سراسری استفاده می نماید، توربین را راه اندازی می کنند).
غیر از موتور راه انداز، وسیله ای بنام تورک کنتور (Torgue converter) یا مبدل گشتاور نیز در رابطه با راه اندازی توربین گاز استفاده می شود که وظیفه آن این است که به موتور راه اندازی این امکان را بدهد که در حالیکه از طریق تورک کنورتر کلاچ راه انداز به محور توربین ـ کمپرسور مربوط شده است، ابتدا بدون بار راه انداز شده و به مرور که در آن به میزان نامی میرسد، گشتاور منتقل گردد یا در واقع بتدریج با روی موتور راهانداز گذاشته شود.
کلاچ راهانداز که در سطور بالا به آن اشاره شد، نیز جزئی از اجزاء راهانداز است که وظیفه ارتباط دادن موتور راه انداز و محور توربین – کمپرسور را از طریق مبدل گشتاور بعهده دارد و معمولا ابتدا کلاچ مزبور بسته می شود و سپس موتور استارت می گردد. از دیگر اجزاء راه انداز، راچت (و یا ترنیگر Turning Gear) را می توان نام برد.
راچت، یک وسیله هیدرولیکی است که مثل یک توربین و با فشار روغن کار میکند و ترنینگر یک وسیله الکترومکانیکی است که قدرت خود را از یک موتور می گیرد و به کمک چرخ دندهای میتواند، گشتاور خود را به محور منتقل کند. در واحدهای مختلف بر حسب نوع طراحی، یکی از دو سیستم فوق استفاده می شود.
وظیفه راچت و ترنینگر، چرخاندن محور توربین ـ کمپرسور با دور کم قبل از استارت موتور راهانداز و یا بعبارت دیگر قبل از استارت واحد است و بدین طریق محور قادر خواهد بود بر اصطکاک ساکن و اینرسی بالای خود فائق آمده، آماده دور گرفتن بشود.
در ضمن راچت و ترنینگر پس از خوابیدن واحد نیز محور را بمدت 48 تا 72 ساعت میچرخانند تا در نتیجه محور که مخصوصا در ناحیه توربین از حرارت بالایی برخوردار است و بطور همگن سرد شود و از بوجود آمدن خمیدگی در محور جلوگیری گردد.
کار سیستم راهانداز تا موقعی که توربین خودکفا نشده و خود نمیتواند با استفاده از گاز داغ خروجی اتاقهای احتراق دور بگیرید، ادامه خواهد داشت و معمولا در حدود 60% دور نامی، کلاچ راهانداز، بطور اتوماتیک باز شده اجزاء راهانداز از محور جدا میشوند و موتور راهانداز نیز پس از یک پریود کار برای خنک شدن، خاموش میگردد.
1-2-2- جعبه دنده:
معمولا دو جعبه دنده در طول محور توربین گاز استفاده میشود یکی جعبه دنده موسوم به کمکی که وظیفه آن فراهم کردن امکان استفاده از گشتاور محور برای چرخاندن بارهای مختلف مثل پمپ سوخت مایع، پمپ آب خنک کن، پمپ اصلی روغن، پمپ روغن هیدرولیک و ... میباشد. دیگر جعبه دندة موسوم به کاهنده که بین محور توربین ـ کمپرسور محور ژنراتور متصل به آن قرار میگیرد (البته در صورتیکه در واحد گازی مورد نظر، دور محورهای توربین ـ کمپرسور و ژنراتور متفاوت باشد). و کار آن تغییر دور میباشد (معمولا در توربینهای گاز صنعتی، فرکانس خروجی 50Hz، تعداد قطب ژنراتور، دو و لذا دو ژنراتور 3000 دور در دقیقه (rpm) میباشد. در توربین بر اساس طراحیهای مختلف، 3000، 4800، 5100 و ... rpm میباشد که برای وصل محورهای ژنراتور و توربین ـ کمپرسور به یکدیگر در صورت تفاوت دور، حتما به جعبه دنده نیاز خواهد بود).
دسته بندی | فنی و مهندسی |
فرمت فایل | pptx |
حجم فایل | 3626 کیلو بایت |
تعداد صفحات فایل | 57 |
این محصول پروژه تحقیقاتی کاملی در مورد توربین های گازی می باشد که در قالب پاورپوینت و در 57 اسلاید ارائه شده است